Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract LetL/Kbe a Galois extension of number fields with Galois groupG. We show that if the density of prime ideals inKthat split totally inLtends to 1/∣G∣ with a power saving error term, then the density of prime ideals inKwhose Frobenius is a given conjugacy classC⊂Gtends to ∣C∣/∣G∣ with the same power saving error term. We deduce this by relating the poles of the corresponding Dirichlet series to the zeros ofζL(s)/ζK(s).more » « less
An official website of the United States government
